
APPLICATION OF AN ALTERNATING-DIRECTION METHOD TO THE NUMERICAL 

SOLUTION OF THE TEMPERATURE PROBLEM FOR THE DRIVING WHEEL OF 

A RADIAL-INFLOW TURBINE 

V. S. Petrovskii and V. I. Krichakin UDC 536.12:621.428 

A domain of complex geometry is transformed into a rectangular domain, for which the 
heat-conduction equations are integrated numerically by an alternating-direction 
method. 

The immense Volume of computations required in the solution of two-or three-dimensional 
heat-conduction problems makes it imperative to find schemes that will reduce the expendi- 
ture of machine time. This attribute is inherent in so-called efficient schemes (alternating- 
direction schemes) [i, 2]. 

Despite the considerable efficiency of these schemes, they have not been used to date 
for analysis of the temperature states of gas turbines. In the present article, therefore, 
we describe an attempt to apply an alternating-direction scheme to the numerical integration 
of the two-dimensional temperature problem for the driving wheel of a radial-inflow gas tur- 
bine, i.e.~ for an axisymmetrical body having a rather complex profile (Fig. I). A diagram 
of the initial domain of integration as a simplified version of the driving-wheel cross sec- 
tion is given in Fig. 2. 

The initial equations for the hlade and the disk are, respectively, 

aT ~ ~ Or ' Oz --~z ] ~ - - - -  c96~, z) [ r b - -  T)i' 

OTo {' 02To t OTo OZTo 
= a  + - -  - - - ~  (2)  

OT ~ Or z r Or ~ J" 

Here T > 0; fa(z) < r ~ f~(z) for the hlade and 0 ~ r ~ fa(r) for thedisk; 0 ~ z ~ be; ra = 
f=(0); rx = fa(0). 

The associated boundary conditions closing the system of equations (1) and (2) are for- 
mulated in [3]. Here we discuss only the application of the alternating-direction scheme for 
solution of the problem. 

It has been found in practice that a problem represented in finite~difference forn for 
a curvilinear initial domain creates appreciable programming difficulties. It also inzreases 
the error of interpolation at the boundaries of the domain due to the occurrence of irregular 
nodes. This situation worsens the convergence of the solution. 

It seems practical in this connection to replace the curvilinear domain with a reztangu- 
lar domain by linear-fractional transformation. Thus, introducing new coordinates, we ~btain 
for the disk 

and for the blade 

• Y2 
�9 r ,  71 = z ,  (3) 
&(z) 
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(ri --r2 ~- r2), ~1 --- z. 
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Fig. 1 Fig. 2 

Fig. i. Schematic section of the driving wheel of a radial-inflow turbine. 

Fig. 2. Computing grid for numerical solution of the temperature problem in appli- 
cation to the driving wheel of a radial-inflow turbine. 

The initial equations (.i)-(2) and the boundary conditions are transformed accordingly; 
for the disk 

where 

[ . , , 2 ,  a2To ( r 2 OBo'] aTo azTo+d2To] (4)  
aToO~ = a (Ag ,-~,oj ~_ § Ao ~of2(~l-"--~ § an ] a~o -4-. 2Bo O~oa--~. oq - - - ~  ' 

. dZf2(n) ] aBa ~a dr2 UI) [2 (~1) - -  
o---n- = [&(n)] ~ an dn2~ - J' 

and for the blade 

where 

arb . A a2Tb ~ a~n, , on, ~, Orb , 

O, =. b--~-~ + L , ~  t Cb---~. b -?Db~ b § ~ b ~  -v- F b T b Gb,. 

A b ~ a (q)~ q-- qo~); B b ---- a; 

a 08 + % + a ; 
Cb= T a~ b ~ an , 

( 06 06 ); 
Dg = T % ~ + 0,1 ) 

Eb=2aqp~; /b=- -2~g(~b '  n, "0. G__FbTg(~b, z); 
c9~ 

E l r 2 . 

6 (r,  z) = 6 (~b']); q~, = & (n) _ & (n) ' 

t~ (n) (r, -- r~) -- [f~ (n) -- t; (n)l (~b-- r~) 
% = & (n) -- h (n) 

(5) 
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The boundary conditions take the following form in the transformed coordinate system: 

OTo 
~ o = 0 ;  - - = 0 ;  

o!o 

~-O(b) ---- rz; 

aTo cos(n, z) aT b 
~o fz (n) = % at  b 

cos (n , ' r )  
fz (~}) 2c *2To - -  r To = Tb; 

OT b = ari d (kh,) [ T g - -  Tg (qkhOl; 
o~ b 

(6) 

(7) 

(s)  

(9) 

bt < ~1 <~ b2, OTb = O; 
a~ b 
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( l o )  

( l l )  

r3 < ~o ~< r2, O T a  _ a a ( ~ . ) [ T o - - T  a (~., kh,)l; 
an ~, 

aT b 
r z < ~ b ~ r  i, - - - - - - 0 ;  ~ = b  z, 

O~ 

(12) 

(13) 

O ~ r ~ r 2 ,  aTo = O; 
a~o 

Orb =o.  

a~ b 

We describe the computing grid (Fig. 2) by families of lines ~i 
h 3 = r2/nl; $i = (i -- n~ -- l)h b + r2, i = n~ + !, n, + 2, ..., nl +n2 
in the domain of the disk and the domain of the blade; ~j + jh_, j = O, i,..., m; h n = b2/m. 
The time step is h T = T/S, T k = khT, k = O, I,..., s; 0 < T ~ ~. 

The finite-difference analogs of the partial derivatives are determined on a nine-point 
mask. 

We first write the difference equations and boundary conditions in explicit form ~ith 
respect to ~ and in implicit form with respect to ~. Then the partial derivatives with re- 
spect to n are found in terms of the known temperature of the k-th layer, and the partial 
derivatives with respect to ~ are written to include the unknown temperatur e of the (k + 
~)-th layer. 

For the domain of the disk (0 < i < n:) 

(14) 

(15) 

= ih3, i = 0, i,..., nl; 
+ I, h b = (r~ -- r2)[n2 

T k+l/2 _ T k [ ,v~+~/2 o,-vk+~ ,,2 .,.k+l/2 
L S o 

0 . 5 h ,  --a (A~o+B2)~o -~-~ - - ~ - ~  + - ; + 1  
hi 

Aar aBa ~ ..~+1/2 q.k+,/2 
1 1 +  1 - -  1 i _ _  1 

+ ~ + - ~ l  2hr + 2Ba,,o • 

k k ~ k 2T~o T k ] 
4h~hn + I~ " 

+ 

(16) 

For the domain of the blade (n~ + 1 < i < n~ + n2 + i) 

Tk+l/2 T~ .,.k+~/2 2T~ +'/2 -4- ..k+~/2 1 i _ _  1 - -  . t / +  1 
- i  - -  = Ab, s ~ , + 0.5h~ h~ 
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,, + C b . , ,  -~+, --~-a T~, 
h= n 2h~ + D b ~ *  -- " 2h n 4- 

+Eb.,. ~'--~'+r'~'--r" 
4hth n -~ Fb., .rf+'/ '  + C~.,~ (~7) 

lhe bo,_mdar4 .conditions for ~ha firs~ state o f  the computations are 

~o = 0 (4 =O),  r~ = T"~+'/~; (18)  

~ . = r , ( i = n ,  or i = n ~ + l ) ;  

,,, -- * . ,_ ,  (19) 
h~ 1,(~) =% "+=- *' + h~ 

-ez.., --~ Cl 9 ) 
and 

T~+t/~ ~.~+t/~. a, ---- " , + '  ' ~b ----rt (i ----- n I Jr  n. z 4- 1); (20) 

T~+,/~ ~+,/~ (kh 0 .,.~+,/= , . , + . : , + 1 -  .,+n, ----- ~tfd [Ti(q, k/t.~) -- ~ n,+n,+~l- ( 2 1 )  
h~ ~, 

The systems of grid equations for integration by columns (j = i, 2, ... ,m- i) are tridiago- 

hal, i.e., 

~,~+~/~ __B~T~+I/2 --; ~+~/~ F ~. 
-~-~+~ -- - -  t (22) 

z a i , t i - - I  

(i = I, 2 . . . . .  n~ + n,). 

The constants Ai, B i, C i and the function F i are determined from (16) and (17). 

The boundary conditions for the columns for i = 0 and i = n, + n~ + i are written in 

the form 

T~ +~12 = xtT~ +'/2 q- vl, i = 0, 

where X, = i and vl = 0; 

Here for n = b~ 

Tk+•/= . T#+I/2 n~q-n=+l - -  ~ 2  n14,-nz "~- YZ' i ~ I2 t - ~  1l 2 ' - -  1. 

afd(kh~ Tg(q, kh.) h~ 
Xz-- j~ 4._ af  d I.kh~) h~ ~2 Z q-- Ctfd (khx) h~ 

and for n E b: we have Xa = i and v2 = 0. From the recursion formulas 

C~ ~A~+F~ 
~ + i =  Bi__~Ai  ~ + i  Bi__~Ai  (23) 

in which a~ = Xa and B, = vx, we determine =i and B i (i = I, 2, ..., n, + n2). 
tion advances from bottom to top. We then find 

Tk+, /2  v2 q- X213n'+n'+' ( 2 4 )  
th+n,+l  

1 ~.2~n,+n,+ 1 

Finally, we determined 

= ~ i + i ' , ' + l  +13i+ t, i = 0 ,  1 , : : . ,  ni ~n2- (25) 

The computation advances from top to bottom. The temperature is found for all j = i, 2, ..., 

m--1. 

This completes the first pass of the computations of the temperature in the (k + ~)-th 

layer in terms of the known temperature in the k-th layer. 

The computa- 
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Fig. 3. Results of numerical solution of the temperature ~roblem for z = i0 -a m 

(Fig. i). The solid curves are plotted for the function T~(T) represented by curve 
1 in Fig. 4; r in m*10 -s. 

Fig. 4. Temperature T~, ~ versus time r, sec, taken as initial functions for solu- 
tion of the temperatur~ problem. 

In the next pass of the computations the initial difference equations are written in ex- 
plicit and implicit form with respect to ~ and n, respectively. The partial derivatives with 
respect to $ are now found directly in terms of the known temperature of the (k ~)-t~ lay- 
er, while those with respect to n are written to include the temperature of the (k + l)-th 
layer. 

The grid equations for the second stage take the form 

A,Vk+l __BiT~+I + ,., ,v~+' ~,o,k~il  / 2 
J ~ i - !  " ' i~ /+  l = - - - /  �9 (26)  

The coefficients Aj, Bj, Cj and the function F~ ,k+~/~ are also determined from Eqs. (16) 
3 

and (17), but with the latter written to take account of the transition from the (k + ~)-th 
to the k-th layer in a somewhat different form. 

The boundary conditions for the rows are written in the following form: 

for . t ' = 0  T~ +I = x , T ~  + l + v  v (27 )  

For $3 < r3 

l i  : I ,  v I : - -  h ' l q ( l - - e - ~ )  �9 
, 

For $3 ~ r~ 

for j = m 

%Tab . 
X~ : V i = 

7. + ~a(ih~o) h n Z ~- ~a  ,1 

Here X2 = I and ~2 = 0. 

From the recursion formulas 

T k +  17 2 , ' r , k+ 1 , 
m = ~ 2 1 m  - 1  T V2' 

Cj 

in which a~ = Xa and Ba = ~, we determine ~ and ~j 
tion advances from left to right. We then find 

Fk+l./2 

B] - -  czjAj 

(j = i, 2, 

(28) 

, (29) 

..., m-- i). The computa~ 
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Next we determine 

m - .: ' I -- Xz=. ( 3 O) 

T,~+ 1 ,.,,k+ i (3z) 

The computation advances from right to left. 

The temperature in row i = n~ is found in terms of the temperature in rows n~ -- i and 
na + 2: 

~n,,f----- h~ -I- ~i h ~  ~- ~s ~ ~ - - ~ 2 ,  (32) 

This completes the second pass of the computation of the temperature in the (k + l)-th 
layer. The transition from the (k + l)~th to the (k + 2)-thlayer is analogous. 

Thus, in the proposed efficient scheme the initial two-dimensional problem is partitioned 
into two one-dimenslonal problems, one of which is solved with the use of an explicit scheme, 
and the other with an implicit scheme. This approach optimally combines the advantages of 
bothschemes. For the implicit scheme the number of operations is O(i/h~h~), which is lower 
by two orders with respect to h~ and h n than the number of operations in the implicit scheme: 
O(i/h~h~). However, the choice of h T ~or the explicit scheme is limited by the stability 

condition h T ~ h~hn/4 , whereas the implicit scheme is unconditionally stable for any h~ and 
h~. 

The results of a computation by the proposed method are given, as an example, in Fig. 3. 
The ohject of the computations is the driving wheel of the turbine of an aircraft booster en- 
gine. The temperature dependences are found for two different time variations of T* (Fig. 4) 
at z = 10 -2 m, i.e., in the cross section coinciding with the maximum blade height, g It is 
seen that the steeper rise of T ~ in the blade zone (curve 2 in Fig. 4) increases the heating 
rate (dashed curves in Fig. 3). g 
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